Closing Tuesday: 2.5-6
Closing Friday: \quad 2.7-8, 2.8
Today: 2.6 and 2.7
Entry Task: Find

1. $\lim _{x \rightarrow \infty} 3^{(1-x)}+2^{\left(1+\frac{1}{x}\right)}$
2. $\lim _{x \rightarrow \infty} \frac{1+7 e^{(3 x)}}{2 e^{x}+4 e^{(3 x)}}$
3. $\lim _{x \rightarrow \infty} \frac{2 x+\sqrt{1+x^{2}}}{5+4 x}$
4. $\lim _{x \rightarrow-\infty} \frac{2 x+\sqrt{1+x^{2}}}{5+4 x}$

Note: $\sqrt{x^{2}}=x$, if $x \geq 0$, and $\sqrt{x^{2}}=-x$, if $x<0$.
5. $\lim _{x \rightarrow \infty}\left(\sqrt{3+5 x+4 x^{2}}-2 x\right)$

Strategies to compute: $\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]$
Strategies to compute: $\lim _{x \rightarrow \infty} f(x)$

Special note: If given two fractions, combine them (common denom).

Try plugging in the value:

1. If denominator $\neq 0$, done!
2. If denom $=0$ \& numerator $\neq 0$,
the answer is $-\infty,+\infty$ or DNE. Examine the sign of the output from each side.
3. If denom = $\mathbf{0}$ \& numerator $=\mathbf{0}$,

Use algebra to simplify and cancel until either the numerator or denominator is not zero.

Strategy 1: Factor/Cancel
Strategy 2: Simplify Fractions
Strategy 3: Expand/Simplify
Strategy 4: Multiply by Conjugate (if you see radicals)

Special note: Combine into one fraction (might need conjugate if given two terms involving a radical).

1. Is it a known limit?

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{1}{x^{a}}=0, \text { if } a>0 ; \lim _{x \rightarrow \infty} e^{-x}=0 \\
& \lim _{x \rightarrow \infty} \ln (x)=\infty ; \lim _{x \rightarrow \infty} \tan ^{-1}(x)=\frac{\pi}{2}
\end{aligned}
$$

2. Rewrite in terms of known limits:

Strategy 1: Multiply top/bottom by $\frac{1}{x^{a}}$, where a is the largest power.
Strategy 2: Multiply top/bottom by $\mathrm{e}^{-\mathrm{rx}}$.

Special note:
If x is positive, then $x=\sqrt{x^{2}}$.
If x is negative, then $x=-\sqrt{x^{2}}$.

Note:

After you complete the homework, you can attempt 30 more limit problems directly from old tests using the practice sheet that I compiled on my website. Here is the direct link:
https://sites.math.washington.edu/~aloveles/Math124Fall2017/m124LimitsPractice.pdf (you can also see full solutions there)
You can also look at any old midterm or old final for more practice.

2.7: The Derivative at a point

For a function, $y=f(x)$, we will define the slope of the tangent line to $f(x)$ at $x=a$ as follows:

Step 1: Let h represent an arbitrary small number. Draw the secant line through the graph at $x=a$ and $x=a+h$.

Step 2: Find the slope of this secant line (your answer will involve h).

Step 3: Find the limit as $h \rightarrow 0$, we will call this the slope of the tangent line at $x=a$.

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Examples:

1. Find the slope of tangent line to
$f(x)=x^{2}$ at $x=3$.
(Give the equation of the tangent line as well)
2. Find the equation for the tangent line to $g(x)=\sqrt{x-3}$ at $x=4$.
3. An object is moving on a number line. Assume the position of the object given by $s(t)=\frac{t}{t+1}$ feet.
(a) Find the instantaneous velocity
at $t=3$ seconds.
(b) Find the average velocity from
$t=3$ to $t=4$ seconds.

Notes:

1. We call $f^{\prime}(a)$ the derivative of

$$
f(x) \text { at } x=a
$$

2. Graphically, $f^{\prime}(a)$ is the slope of the tangent line to $y=f(x)$ at $x=a$.
3. This is equivalent to saying $f^{\prime}(a)$ is the instantaneous rate of change for $y=f(x)$ at $x=a$.
4. Given $y=f(x)$. Units of $f^{\prime}(a)$ are $\frac{y \text {-units }}{x-\text { units }}$.
For example, if $x=$ hours and $y=f(x)=$ miles, then $f^{\prime}(x)=$ miles/hour.

(Like HW!)

4. Find the equation for the tangent line to the ellipse $x^{2}+4 y^{2}=5$ at the point $(x, y)=(1,1)$.
